Feature Selection and Parameters Optimization of SVM Using Particle Swarm Optimization for Fault Classification in Power Distribution Systems
نویسندگان
چکیده
Fast and accurate fault classification is essential to power system operations. In this paper, in order to classify electrical faults in radial distribution systems, a particle swarm optimization (PSO) based support vector machine (SVM) classifier has been proposed. The proposed PSO based SVM classifier is able to select appropriate input features and optimize SVM parameters to increase classification accuracy. Further, a time-domain reflectometry (TDR) method with a pseudorandom binary sequence (PRBS) stimulus has been used to generate a dataset for purposes of classification. The proposed technique has been tested on a typical radial distribution network to identify ten different types of faults considering 12 given input features generated by using Simulink software and MATLAB Toolbox. The success rate of the SVM classifier is over 97%, which demonstrates the effectiveness and high efficiency of the developed method.
منابع مشابه
S3PSO: Students’ Performance Prediction Based on Particle Swarm Optimization
Nowadays, new methods are required to take advantage of the rich and extensive gold mine of data given the vast content of data particularly created by educational systems. Data mining algorithms have been used in educational systems especially e-learning systems due to the broad usage of these systems. Providing a model to predict final student results in educational course is a reason for usi...
متن کاملIntelligent Optimization Methods for High-Dimensional Data Classification for Support Vector Machines
Support vector machine (SVM) is a popular pattern classification method with many application areas. SVM shows its outstanding performance in high-dimensional data classification. In the process of classification, SVM kernel parameter setting during the SVM training procedure, along with the feature selection significantly influences the classification accuracy. This paper proposes two novel in...
متن کاملSimultaneous Placement of Capacitor and DG in Distribution Networks Using Particle Swarm Optimization Algorithm
Nowadays, using distributed generation (DG) resources, such as wind and solar, also improving the voltage profile in distribution companies has been considered. As optimal placement and sizing of shunt capacitors become more prevalent, utilities want to determine the impact of the various capacitors placement in distribution systems. Locating and determining the optimal capacity of shunt capaci...
متن کاملSpectral and Wavelet-based Feature Selection with Particle Swarm Optimization for Hyperspectral Classification
Spectral band selection is a fundamental problem in hyperspectral classification. This paper addresses the problem of band selection for hyperspectral remote sensing image and SVM parameter optimization. First, we propose an evolutionary classification system based on particle swarm optimization (PSO) to improve the generalization performance of the SVM classifier. For this purpose, we have opt...
متن کاملInter-turn Short Circuit Fault Diagnosis of Induction Motors Using the Svm Optimized by Bare-bones Particle Swarm Optimization
In order to accurately recognize the stator winding inter-turn short circuit fault of induction motors, a novel method for fault diagnosis was proposed based on a bare-bones particle swarm optimization algorithm (BBPSO) and support vector machine (SVM); and feasible diagnostic steps were also introduced. In this method, the feature vector of induction motor in different conditions was extracted...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017